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SUMMARY 
This paper is concerned with the problem of obtaining higher 

approximations to the flow past a sphere and a circular cylinder 
than those represented by the well-known solutions of Stokes 
and Oseen. Since the perturbation theory arising from the 
consideration of small non-zero Reynolds numbers is a singular 
one, the problem is largely that of devising suitable techniques for 
taking this singularity into account when expanding the solution 
for small Reynolds numbers. . 

Separate, locally valid 
(in general), expansions of the stream function are developed for 
the regions close to, and far from, the obstacle. Reasons are 
presented for believing that these ‘ Stokes ’ and ‘ Oseen ’ expansions 
are, respectively, of the forms 

The technique adopted is as follows. 

where (r, 0) are spherical or cylindrical polar coordinates made 
dimensionless with the radius of the obstacle, R is the Reynolds 
number, and fn+llfn and F,%+JFn vanish with R. Substitution 
of these expansions in the Navier-Stokes equation then yields a 
set of differential equations for the coefficients t,hm and Yn, but 
only one set of physical boundary conditions is applicable to each 
expansion (the no-slip conditions for the Stokes expansion, and 
the uniform-stream condition for the Oseen expansion) so that 
unique solutions cannot be derived immediately. However, the 
fact that the two expansions are (in principle) both derived from 
the same exact solution leads to a ‘ matching ’ procedure which 
yields further boundary conditions for each expansion. It is thus 
possible to determine alternately successive terms in each 
expansion. 

The leading terms of the expansions are shown to be closely 
related to the original solutions of Stokes and Oseen, and detailed 
results for some further terms are obtained. 

1. INTRODUCTION 
, The problem of determining the steady flow past fixed bodies in a slow 
uniform stream of viscous incompressible fluid is an old one. It was first 
considered by Stokes (1851), and has been discussed subsequently by 
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many authors. With very few exceptions, however, these authors have 
been almost entirely concerned with finding the flow past various shapes 
of body in the limit of zero Reynolds number. Yet many of the effects 
that arise when the Reynolds number is not negligibly small are also of 
considerable physical and mathematical interest. A number of phenomena 
in lubrication and the motion of small particles, for instance, depend 
critically on second-order effects arising from the inertia of the fluid. For 
practical purposes, a first approximation to these second-order effects 
would doubtless be quite adequate, but the purely mathematical difficulties 
encountered in their calculation raise fundamental questions concerning 
the general nature of expansions for flow fields at small Reynolds numbers. 
It is with such questions that the present paper is concerned. 

The problem originally considered by Stokes (1851) was that of flow 
past a sphere, for which he obtained a solution by neglecting completely 
the inertia of the fluid. Later, Whitehead (1889) attempted to improve 
upon this solution by obtaining higher approximations to the flow when 
the Reynolds number is not negligibly small. The method proposed by 
Whitehead was the obvious one of using a lower-order approximation to 
calculate the inertia terms in the equation of motion, thus developing an 
iterative procedure. Since the boundary conditions at each stage of the 
iteration are independent of the Reynolds number, this procedure is clearly 
equivalent to assuming an expansion of the flow in powers of the Reynolds 
number. When this assumption is valid, and there are many slow motion 
problems for which it is*, there is little more to be said. But, as is now 
well known, the assumption is never valid in problems of uniform streaming. 
The particular difficulty encountered by Whitehead was that the second 
approximation to the velocity of flow past a sphere remains finite at infinity 
in a way which is incompatible with the uniform-stream condition. And 
higher approximations to the velocity distribution actually diverge at 
infinity. The assumption of an expansion in powers of the Reynolds number 
thus leads to a situation in which it is impossible to satisfy the boundary 
conditions of the problem in all terms except the leading one. This 
mathematical phenomenon appears to be 'common to all problems of 
uniform streaming past bodies of finite length-scale, and is sometimes 
referred to as ' Whitehead's paradox '. 

The paradox has, of course, long since been resolved. Both its physical 
origin and a mathematical device for overcoming the associated difficulties 
were pointed out by Oseen (1910). Since anybody moving steadily through 
a viscous fluid must experience some resistance, consideration of the 
momentum flux across a large surface surrounding the body shows that 
the magnitude of the disturbance to the uniform velocity of the stream 

* Apart from some finer qualifications, the necessary and sufficient condition for 
the validity of this assumption in problems of steady flow is that the velocity should 
fall to zero at a great distance from the boundaries generating the flow not less rapidly 
than the reciprocal of the distance. The assumption is thus valid for the flow 
generated by a slowly rotating sphere. 
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cannot everywhere fall to zero more rapidly than the inverse square of the 
distance from the body. But, for so large a disturbance as this, the 
acceleration of the fluid at a great distance cannot be negligible by comparison 
with the local viscous force. For the former, being almost entirely due to 
the convective effect of the stream, is a constant multiple of the first 
derivative of the velocity, whereas the latter is a multiple of the second 
derivative of the velocity. Thus the viscous force can be dominant only 
if the decay of the disturbance is exponentially rapid. -Stokes’s theory is 
therefore not self-consistent at a great distance from the body, and it is not 
surprising that the procedure adopted by Whitehead should lead to further 
inconsistencies. In more mathematical terms, the perturbation represented 
by a small non-zero Reynolds number has a singularity at infinity (in space), 
and Stokes’s solution does not provide a uniformly valid approximation to 
all the required properties of the flow. 

It is a straightforward matter to show that Stokes’s solution does not 
break down until the region in which the flow is nearly a uniform stream 
has been reached, so that the solution does provide a uniformly valid 
approximation to the total velocity distribution (and consequently a valid 
approximation to many bulk properties of the flow, such as the resistance). 
It is only the derivatives of the velocity at a great distance that are seriously 
in error. But, of course, this error is crucial in the problem of obtaining a 
second approximation to the flow, since the neglected inertia terms in the 
equations of motion involve velocity gradients. Nor can Whitehead’s 
procedure be used to derive a locally valid second approximation to the 
flow in the region not far from the sphere. It is true that this procedure 
produces a correct differential equation for the second approximation, but 
the spatial restrictions placed upon its validity prohibit the use of the outer 
boundary conditions, so that a unique solution cannot be derived. In fact, 
as in all singular perturbation problems, a uniformly valid approximation 
to the neglected terms in the governing equation is a necessary prerequisite 
for the determination of a second approximation to the solution anywhere 
in the field. 

Fortunately, as was shown by Oseen (1910), the determination of a 
uniformly valid first approximation to the velocity and all its derivatives 
is itself a linear problem which may be solved analytically. The circum- 
stance, already mentioned, that the inertia terms are important only in the 
region where uniform-stream conditions have been almost attained perniits 
a linear approximation to be made which yields the well-known Oseen 
equation. The very interesting description of the asymptotic flow field 
given by the solutions of this equation now occupies an important place 
in the theory of viscous motion. In the present paper, however, we are 
more interested in the use of these solutions as tools in the problem of 
finding higher approximations. 

We may also note that the relevant solution of Oseen’s equation provides 
a uniformly valid approximation to the velocity and all its derivatives in 
the two-dimensional flow past an infinite cylinder of finite cross-sectional 
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length-scale, though Stokes’s approximation yields no solution in this case. 
The first such solution to be obtained was that for flow past a circular 
cylinder (Lamb 1911), and a more quantitative summary of these results 
and those for flow past a sphere is given in $2. 

In  both the two- and three-dimensional cases, therefore, the solutions 
of Oseen’s equation provide an adequate starting point for the determination 
of higher approximations to the flow. However, apart from the recent 
paper by Lagerstrom & Cole (1955), no work on this problem seems to 
have been published. It is true that a great deal of effort has been expended 
in finding higher approximations on the assumption that Oseen’s equation, 
rather than the Navier-Stokes equation, is the exact governing equation ; 
but this problem is not strictly relevant. Oseen’s equation does contain 
the Reynolds number as a free parameter (an obviously necessary conse- 
quence of the uniform validity of Oseen’s approximation), but the idea of 
solving the equation to a higher order of approximation in the small Reynolds 
number than that involved in its derivation is of limited value. The 
justification usually given is that Oseen’s equation and the Navier-Stokes 
equation are qualitatively similar, so that solutions of the former might be 
expected to yield qualitative information about solutions of the latter for 
all Reynolds numbers. And on these grounds, a few basic solutions, such 
as Goldstein’s (1929) solution for the sphere, are surely worth while. But 
the problem as a whole has probably received far more attention than it 
deserves. 

In principle, the problem of obtaining higher approximations to the 
real flow is not appreciably more difficult than that mentioned above. 
For there seems little reason to doubt that Whitehead’s iterative method, 
using Oseen’s equation rather than Stokes’s equation would yield 
an expansion, each successive term of which would represent a 
uniformly valid higher approximation to the flow. In each step of the 
iteration a lower-order approximation would be used to calculate those 
particular inertia terms that are neglected in Oseen’s equation and the 
resulting inhomogeneous form of Oseen’s equation would be solved, to 
the relevant degree of accuracy, for the boundary conditions appropriate 
to the problem. The expansion generated in this way would seem to be 
the most economic expansion possible, in the sense that the partial sums 
of any order contain all the legitimate, and no redundant, information about 
the whole flow field. 

Nevertheless, it is the primary object of the present paper to describe 
in detail an alternative procedure which in many ways is more satisfactory. 
This alternative procedure involves simultaneous consideration of locally 
valid (in general) expansions close to, and far from, the singularity of the 
perturbation. These expansions may be called ‘ Oseen’ and ‘ Stokes’ 
expansions, respectively, since their leading terms are closely related to the 
original approximations of these authors. The Stokes expansion is a 
straightforward expansion of the kind envizaged by Whitehead. It is an 
expansion in the Reynolds number for fixed values of the space coordinates 
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(made dimensionless with the finite length-scale of the body). For the 
Oseen expansion, on the other hand, the coordinate system is first strained, 
by a factor depending upon the Reynolds number, in such a way that the 
length-scale of variations in the asymptotic flow pattern at a great distance 
from the body is finite in terms of the new coordinates. In  this new 
coordinate system, the length-scale of the body is very small, and the 
singularity of the perturbation is removed to the origin of coordinates 
(inside the body). The Oseen expansion is then an expansion in the 
Reynolds number of fixed values of the new coordinates. The connection 
between this expansion and Oseen’s work is evident when one remembers 
that both the inertia and viscous forces at a great distance depend linearly 
on the disturbance to the stream. For the fact that these forces are of a 
comparable order of magnitude is then made to appear ‘natural’ by the 
choice of length-scale referred to above. 

On grounds of expediency alone, the use of Stokes and Oseen expansions 
is preferabkto the use of an expansion which is generated by uniformly 
valid successive approximations. In  the first place, their mathematical 
structure is a great deal simpler. In fact, they are usually power series, or 
simple extensions of power series, in the Reynolds number; whereas a 
uniformly valid approximation necessarily depends upon the Reynolds 
number in a complicated manner since it involves functions of both the 
‘ strained ’ and ‘ unstrained ’ coordinate systems. Moreover, uniformly 
valid approximations per se are not usually of much physical interest (apart, 
perhaps, from a first approximation, which gives an overall description 
of the singularity of the perturbation). In the present problem, for instance, 
it is the Stokes expansion that gives virtually all the physically interesting 
information. Questions of uniformity arise only in connection with the 
proper derivation of this expansion, and there is therefore some point in 
attempting to cast such questions-and techniques for answering them-- 
in terms of the expansion itself. 

However, the attitude adopted by Lagerstrom & Cole (1955), who also 
discuss in general terms the use of Stokes and Oseen expansions in the 
problem of the present paper, is rather more fundamental. They point 
out that, when dealing with asymptotic expansions for small Reynolds 
numbers, it is wise to restrict attention to those expansions that can (in 
principle) be derived from the exact solution by the application of formal 
limit processes which may be defined d priori. For it is then a relatively 
straightforward matter to discuss such questions as the error involved in 
any particular partial sum, or the domain of uniform validity of the 
expansion. The Stokes and Oseen expansions are of this type since they 
may be derived by the limiting processes described above. Thus, 
if R is the Reynolds number and x is the (dimensionless) position vector, 
the limiting process R+O for either fixed x or fixed R x  defines, 
respectively, the Stokes or Oseen limit. The application of these limits 
to the difference between the exact solution and the nth partial sum then 
yields the ( n  + 1)th term of the relevant expansion. 

F.M. R 
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An expansion in terms of uniformly valid successive approximations, 
on the other hand, cannot normally be derived from the exact solution in 
this way. It can be derived from the exact solution by inspection, when 
the detailed form of the solution is known; or it can be defined, as has 
been done above, in terms of the iterative process that is to be applied to 
the governing equation. However, both these concepts are very cumbersome, 
and since uniformly valid approximations may always be constructed from 
a simultaneous knowledge of the Stokes and Oseen expansions, it is more 
satisfactory to proceed in this latter way rather than vice versa. 

The problem thus reduces to that of determining the proper boundary 
conditions for the individual terms of the Stokes and Oseen expansions. 
At the regular end of the range of validity of these expansions (the body 
for the Stokes expansion, and infinity for the Oseen expansion), the 
boundary conditions are the physically obvious ones. At the singular 
end, however, the physical boundary conditions are irrelevant and it is 
necessary to use the fact that the Stokes and Oseen expansions are different 
forms of the same function. This leads to a matching of the expansions 
which is of such a kind that it becomes possible to derive alternately successive 
terms in each expansion. These matching conditions have already been 
described in general terms by Lagerstrom ik Cole (1955) and a detailed 
account of the procedure is now given in 0 3 and Q 4. 

For the sake of simplicity, the paper deals only with flow past a sphere 
and a circular cylinder (treated respectively in $ 3  and Q 4), since these special 
cases appear to  illustrate most* of the pertinent ideas. 

2. THE APPROXIMATIONS OF STOKES AND OSEEN 
2.1. Flow past a sphere 

In Stokes's original treatment (1851) of slow streaming past a sphere, 
the inertia of the fluid is neglected completely, so that the Navier-Stokes 
equation reduces to  

where p is the kinematic pressure, v is the kinematic viscosity, and u is the 
velocity vector. It is then a straightforward matter to obtain, in terms of 
a Stokes stream function, the integral of this equation that satisfies the 
no-slip condition at the sphere and the uniform-stream condition at infinity. 
If U is the velocity of the undisturbed stream, and a is the radius of the 
sphere, this integral for the Stokes stream function Uaa# is 

0 = - gradp + vV2u, (2.1) 

where the origin of polar coordinates (ar, 8, 4) is taken at the centre of 
the sphere, the h e  8 = 0 being in the direction of the undisturbed stream. 

For a recent account of the important effects of 
The corre- 

*Though certainly not all. 
asymmetry in two-dimensional flow past a cylinder, see Imai (1951). 
sponding three-dimensional problem appears not to have been considered. 
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The individual terms in (2.2) are, successively, a uniform stream, a so-called 
‘stokeslet’, and a doublet. It is, of course, only the stokeslet which 
contributes to the vorticity of the flow. 

The values of r at which Stokes’s approximation breaks down may 
now be found by using (2.2) to calculate the neglected terms. When r is 
large, the dominant inertia terms are the convective accelerations arising 
from the interaction between the uniform stream and the stokeslet, and 
are of order U2/av2. The viscous term, on the other hand, is of order 
vU/a2r3 in this part of the flow. The Stokesian theory therefore breaks 
down when 

Rr = O(I), (2.3) 

where R is the small Reynolds number Ua/v. It  is important to note in 
this criticism that the dominant inertia terms arise from the rotational 
velocity field due to the stokeslet, and cannot be represented as the gradient 
of a scalar. If the latter had been possible, the error arising from these 
terms could have been absorbed into the solution for the pressure field 
without affecting the solution (2.2) which is the general solution for a 
conservative distribution of viscous forces. 

-kcording to (2.3), the solution (2.2) approaches arbitrarily close (for 
sufficiently small R )  to the conditions of a uniform stream before the theory 
breaks down. Stokes’s solution is therefore actually a uniform approxi- 
mation to the total velocity distribution*. However, it is clearly not a 
uniform approximation to the disturbance of the uniform stream, or, 
equivalently, to the distribution of velocity gradients. As noted in $ 1 ,  
it is for this reason that the solution cannot be used to obtain a second 
approximation in the manner attempted by Whitehead (1889). 

The idea behind Oseen’s (1910) technique for obtaining a uniform 
approximation to the disturbance of the stream is to take inertia forces 
into account in the region where they are comparable with viscous forces, 
but neglect them in the Stokesian region of the flow. Thus, since the flow 
is nearly a uniform stream in the former region, the appropriate equation is 

U . gradu = - gradp + vV%, (2.4) 

where the vector U represents the uniform stream. The left-hand side 
of (2.4) is, of course, negligible throughout the region in which Stokes’s 
approximation is valid. It may be noted in passing that the equation (2.4) 
is formally the same as the equation which would be obtained if the velocity 
distribution were written in the form U +u and the Navier-Stokes equation 
were linearized in the disturbance velocity u. However, this interpretation 
is conceptually wrong and can lead to erroneous or misleading conclusions 
such as Lamb’s statement (1932, p. 610) that Oseen’s theory is less accurate 

++ In this paper, we consider u* to be a uniform approximation to u if, as R .+ 0, 
This condition may clearly be violated in a trivial 

However, in any particular problem, we are 
u-u* = o (u) for all values of x. 
sense near the regular zeros of u. 
interested in the condition only near the singularities of the perturbation. 

R 2  
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than Stokes’s in the neighbourhood of the sphere (where the boundary 
condition u = -U  would make nonsense of such a linearization). The 
left-hand side of (2.4) is not intended to be a uniform approximation to the 
inertia terms, and the difference between Oseen’s and Stokes’s theory in 
the neighbourhood of the sphere is of a small order which neither theory 
is entitled to discuss. 

The derivation of the appropriate exact solution of Oseen’s equation (2.4) 
is a matter of some difficulty (see Goldstein 1929). Fortunately, however, 
there is no justification (in the present investigation) for finding a solution 
which satisfies the boundary conditions to a higher order of approximation 
than that involved in the governing equation, and it is a relatively simple 
matter to show that the solution given by Oseen himself is an adequate 
approximation. In terms of the dimensionless stream function #, this 
solution is 

The function (2.5) certainly satisfies the differential equation (2.4) and the 
relevant boundary condition at infinity. Moreover, when r is of order 
unity, the function becomes 

which agrees with Stokes’s solution, and consequently satisfies the boundary 
condition on the sphere, to an adequate approximation. 

That (2.5) provides a uniform approximation to the disturbance of the 
stream follows immediately from the manner in which it has been obtained, 
and it is interesting to observe the nature of the non-uniformity associated 
with Stokes’s solution. According to (2.5), the symmetric flow due to the. 
stokeslet changes, at large values of Rr, into a simple source described by 
the stream function 3 * - - -  2R (’ f ‘OS e), 

whose mass flux is supplied asymmetrically by an inflow along a narrow 
wake defined, in an order-of-magnitude sense, by 

Rr( 1 - cos 8) = O( 1). 

The function that describes this transition is a function of Rr and 9, and 
this strained coordinate system will appear as the natural one for the entire 
Oseen expansion (see 5 3.2). 

Finally, it should be noted that Oseen’s equation (2.4) is only a first 
approximation to the governing equation and cannot be used as such to 
derive second approximations to any property of the flow. Thus Oseen’s 
derivation (1913) of a ‘second approximation to the drag coefficient of a 
sphere, namely 
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where D is the kinematic drag, would seem to be invalid, though the result 
is in fact correct (see 9 3.4). Strictly, Oseen’s method gives only the leading 
term of (2.6) and is scarcely to be counted as superior to Stokes’s method 
for the purpose of obtaining the drag. 

2.2. Flow past a circular cylinder 
For slow 

uniform streaming motion past a circular cylinder, there is no solution 
to Stokes’s equation (2.1) that remains finite as Y becomes indefinitely large 
and that. satisfies the no-slip condition on the cylinder. Hence, unlike the 
three-dimensional case, there is no solution to Stokes’s equation that 
provides a uniform approximation to the total velocity distribution ; it 
is therefore not immediately clear that Oseen’s’ equation (2.4) will provide 
a uniform approximation to even the total velocity distribution. 

Let ar and 6’ refer in this section to the two-dimensional radial and 
angular polar coordinates respectively, the line 0 = 0 being the positive 
direction of the stream, and let Ua$ be the Lagrange stream function, 
where a is the radius of the cylinder, and U the uniform streaming velocity. 
If, now, we seek that solution of Stokes’s equation which satisfies the 
no-slip condition on the cylinder r = 1, which contains a term sin0 (in 
view of the uniform stream condition at infinity), and which diverges least 
rapidly as r becomes indefinitely large, we obtain 

The two-dimensional case exhibits profound differences. 

For very large Y, the solution (2.7) is dominated by the rotational term 
rlogr, and, at first sight, appears wholly unsatisfactory because of this 
logarithmic divergence. However, by substituting (2.7) into the full 
equation of motion, we find that the inertial forces neglected are of order 
C2(log r) /r2,  and the viscous forces of order C/Rr3. These will be comparable 
when 

CRY log T = O( l), (2.8) 

and we should not expect the Stokes solution (2.7) to be valid beyond 
a value of r given by (2.8). In  other words, while (2.7) may be an adequate 
representation of the flow relatively close to the cylinder, it cannot represent 
a uniform approximation to the total velocity distribution. 

It is possible, however, to write the approximation (2.7) in such a way 
that this non-uniformity appears less severe than might at first sight be 
supposed. Thus we may write (2.7) in the form 

- 2r log(f(R)) + 2r log{rf(R)) - r + (2.9) 

when j ( R )  is an arbitrary function of R. For f ( R )  < 1, and rf(R) of order 
unity, the dominant term in (2.9) will be -2Clog{f(R)}r  sin6’. If this 
is to represent the external flow, namely a uniform stream rsin0, then 
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we can put C = - 1/2log{f(R)). Further, by substituting this value of C 
and Y = l / f (R)  into (2.8) we get 

Thus for f(R) = R, the Stokes solution (2.9) leads to a uniform stream 
of order unity in that very region where Stokes’s equation ceases to be 
valid, It is this apparently fortuitous behaviour that suggests that the 
external uniform stream condition has been reached before the Stokes 
approximation breaks down. The logarithmic term in (2.7) apparently 
plays an important role in making the solution (2.7) as nearly uniform as 
the approximation allows, and it is interesting to note that a uniform 
approximation is obtained by making only a slight change in the solution 
(2.7). Thus the form 
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R/f(R) = W). (2.10) 

sin B (2.11) 

is such that it tends to r sin 0 as Y tends to infinity, and also only differs from 
the Stokes solution (2.7) by terms of order R when r is of order unity. 
The form (2.11) may be regarded as an analogue of (2.2) in the three- 
dimensional case, and for similar reasons, we are led to expect that Oseen’s 
equation (2.4) will provide a uniform approximation to the disturbance 
stream function. 

In terms of the stream function, Oseen’s equation becomes 

VF-R-  V: Z,!J = 0 ( :J (2.12) 

where x = rcos8. Fax& (1927) and later Tomotika & Aoi (1950) have 
solved this equation exactly to satisfy the no-slip condition on the cylinder 
and the uniform-stream condition at infinity. However, as has been 
explained for the case of the sphere, there is no point in solving the linear 
equation (2.12) to a greater degree of approximation than that of the inertial 
terms neglected by substituting the Oseen equations for the Navier-Stokes 
equations, and so the simpler solution given by Lamb (1911) is as good an 
approximation as it is possible to obtain from the linearized equation. 
In  fact, by writing Lamb’s solution in terms of +, in the form 

+ O(Bg2),  (2.13) 
“ 1  Y sin nd 

sine- 2 - $,(+Rr) - * = (’+ &) n=l 2B0 n 

where Bo = $ - ~ - l o g $ R  (2.14) 

and = 4K1 4% + ‘%(I,, +I + In-1>, (2.15) 

the Kp and I,, being modified Bessel functions, we get a uniform approxi- 
mation to the disturbance stream function over the entire flow. Within 
the Stokes region (2.13) becomes, to the approximation involved, a Stokes 
solution, while far from the cylinder it represents a characteristic wake flow 
similar to that described for the sphere. But whereas the solution for the 
sphere is correct to terms of order R,,the solution for the cylinder is correct 
only to terms of order (log R)-l. 
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3. GENERAL EXPANSIONS FOR FLOW PAST A SPHERE 

In this section we consider the problem of how to obtain higher 
approximations to the velocity distribution in flow past a sphere. The 
disadvantages of applying a uniformly valid iterative process to Oseen’s 
equation (2.4) have already been noted in 5 1. The terms of the resulting 
expansion, of which the leading term (2.5) is typical, involve the Reynolds 
number in far too heterogeneous a manner to make the significance of the 
expansion at all clear. Instead, therefore, we employ the more homogeneous 
Stokes and Oseen expansions are described below. 

3.1. The Stokes and Oseen expansions 
In  the Stokes region of the flow, that is where Y = 0(1), we write the 

governing equation for the stream function 1,4 in its customary form, namely 

(3.2) 
where 

= case, 

(3-3) 

(3.4) 

and assume an expansion of the form 

?b = fO(R)?bO(Y, PI +”fdR)dJl(Y9 PI + .*., (3.5) 

where f77+I(R)/f?L(R) --f 0 as R --f 0. (3.6) 
The expansion (3.5) should be regarded as the expansion of the exact 
solution $(r, p, R) for small values of R at a$xed value of Y .  The assumption 
that the expansion takes the form indicated is thus equivalent to the very 
mild assumption that there is no singular dependence on R in the finite 
part of the field (such as arises, for instance, in connection with the formation 
of shear layers at large values of R) .  We refer to (3.5) as the Stokes 
expansion. 

Since we require the magnitude of the velocity to be everywhere bounded, 
we may write 

without loss of generality. Formal allowance is thus made for the possibility 
that +o 3 0, though in fact this is not necessary, since it is evident that 
t,bO must be Stokes’s solution. 

The expansion (3.5) is required to satisfy the differential equation (3.1) 
and the no-slip condition on the sphere. Since the expansion is invalid 
at large values of r, the uniform-stream condition at infinity must be replaced 
by the requirement that the expansion should be perfectly matched to an 
expansion which is valid in the outer region. 

fO(R) 1 (3.7) 
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The reason for the breakdown of the Stokesian theory is that inertia 
and viscous forces become comparable at large values of Y .  This suggests 
that, for the outer expansion, we should find a transformation which removes 
the Reynolds number from the governing equation, thereby suiting the 
coordinate system to the fact that all terms in the equation are of a comparable 
order of magnitude. There are, of course, many such transformations, but 
for the purpose in hand we assume that they are all essentially equivalent 
and select the simplest, which is an isotropic straining of the coordinate 
system and a simple scaling of the stream function. Thus we introduce the 
variables 

and, when the governing equation is expressed in terms of these variables, 
the condition that the R should not appear is 

P =f(R)r,  Y? = g(R)+, (3.8) 

R W )  = g(R)- (3.9) 

Further, since the (dimensionless) velocity must be of order unity in the 
region of validity of the expansion now sought, that is, where p and Y? are 
of order unity, we must have 

f2(W = g(R). (3.10) 

In  this way we obtain the Oseen variables 

p = Rr, Y = R2+, (3.1 1) 

in terms of which the governing equation (3.1) becomes 

(3.12) 

where Di and L, are the same operators as (3.3) and (3.4), but with r replaced 

The expansion in the outer region, which we call the Oseen expansion, 

y = Yo(,, P )  + Fl(R)Y,(f, P )  + F2(R)YZ(P, PI + * - * 7  (3.13) 

where F,+l(R)/F,(R) + 0 as R + 0. (3.14) 
That the leading term should be independent of R is, of course, implicit in 
the choice of the Oseen variables (3.11). The structure of the remainder 
of the expansion then rests upon assumptions similar to those made for the 
Stokes expansion. In  the present case, however, the absence of a singular 
dependence on p and p (except at p = 0) as R + 0 is not intuitively obvious, 
and the plausibility of the expansion (3.13) depends on the demonstration 
that it is possible to satisfy the governing equations and boundary 
conditions with such an expansion. 

The expansion (3.13) is required to satisfy the differential equation (3.12) 
and the uniform-stream condition at infinity. On the other hand, the 
no-slip condition on the sphere, which in the new coordinate system has 
shrunk to a very small sphere of radius R (thus introducing the Reynolds 

by P. 

is now assumed to take the form 
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number into the boundary conditions rather than the differential equation), 
is replaced by the condition that (3.13) should be matched to the Stokes 
expansion (3.5) at small values of p. 

The matching conditions follow from the fact that the Stokes and Oseen 
expansions must be related in some way, since they are both expansions of 
the same function for small values of R, even though one expansion does 
not in general determine the other uniquely. The nature of this relation, 
and hence the conditions themselves, may be found from the following 
rather intuitive argument. The common features of the Stokes expansions 
of the infinitely many functions that all have the same Oseen expansion 
ought to be possessed by the ' Stokes expansion ' of the Oseen expansion 
itself. Thus, if the Oseen expansion 

t: F,L(R)yn(Rr, P )  

is formally expanded about R = 0 for fixed values of Y (by expanding the 
Y,,(p,p) for small values of p, and re-arranging the terms), the resulting 
expansion, 

must be closely related to the Stokes expansion ( 3 . 5 )  of the actual flow. 
In  fact, the only reason why these last two expansions might not be identical 
is that the Stokes coefficients y!~>~(r, p) might involve terms (like e-r = e d R )  
which are important in the Stokes region but which are so small when Y is 
large that they do not contribute to any term of the Oseen expansion. 
Thus, taking all such possibilities into account, it seems that we must have 
fn(R) = g , l ( R )  and that $*(r, p) and +n(r, p) must have the same asymptotic 
expansion for large values of r .  The expansions of the Oseen coefficients 
for small values of p thus determine uniquely the expansions of the Stokes 
coefficients for large values of 1' (and vice versa). 

In practice, of course, it is necessary to solve for one term at a time, 
and the procedure for, say, a Stokes term is then as follows. The general 
solution for this term that satisfies the no-slip condition on the sphere is 
first obtained from the relevant differential equation and is then expanded 
as an Oseen expansion. The individual terms in this expansion are then 
compared with the corresponding terms that have previously been calculated 
in the Oseen expansion of the full solution. According to the conditions 
derived above, the former terms must occur explicitly in the expansions 
of the latter terms for small values of p. A comparison of coefficients then 
uniquely determinks the arbitrary constants in the general solution for the 
Stokes term. The analogous procedure for the calculation of an Oseen 
term is obvious. 

c g7L(R)+?f(r, P), 

3.2. The leading terms of the expansions 
It is clear from the conventional approach described in $2.1 that the 

leading terms of the expansions (3.5) and (3.13) are, respectively, Stokes's 
solution 

$0 = k ( 2 r 2 - 3 +  ;)(l -pa), (3.15) 
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and a uniform stream 
Yo =.;pa( 1 - 112). (3.16) 

These expressions both satisfy their respective differential equations and 
boundary conditions. Moreover, the matching of these leading terms is 
particularly trivial. When (3.15) is written in terms of the Oseen variables 
(3.11), its contribution to Y is seen to be 
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(3.17) 

so that only the uniform-stream term contributes to Yo. The boundary 
conditions for Yo are therefore the same at p = 0 and p = co, and the exact 
solution of the non-linear equation for Yo is the uniform stream (3.16). 
This result is, of course, merely a re-statement of the fact that Stokes's 
solution gives a uniform approximation to the total velocity distribution. 

Although the forms of the leading terms are already known, it is 
instructive to consider their derivation ab initio, if for no other reason than 
to  prepare the ground for the rather more difficult two-dimensional case. 
In  this connection it should be noted that it is sufficient to determine either 
of the solutions (3.15) and (3.16), since adequate boundary conditions are 
then available for the determination of the other. 

Now, there appears to be a simple physical argument for the solution 
(3.16). The Oseen variable p is, by definition, 

(3.18) 

where v' is the (dimensional) radial distance from the centre of the sphere; 
and this is independent of a. For fixed values of U and v, therefore, a 
fixed value of p corresponds to a fixed position in space. Hence, if the 
limiting process R +  0 is interpreted as the limiting process a +  0, it 
follows that the flow at the fixed point under consideration must ultimately 
be that of the undisturbed stream. It is true that the argument makes some 
assumptions about the magnitude of the disturbance caused by a body of 
zero size, implying, for instance, that the total force on the sphere vanishes 
with its radius, but such assumptions can be accepted with some assurance. 

The derivation of the leading term of the Stokes expansion, +@, is then 
straightforward. The equation for +o is 

D% = 0, (3.19) 
and it is not difficult to show that the general regular solution of this equation, 
that vanishes at p = 2 1 has a double zero at r = 1, is 

+o = 5 ~ ~ ~ ( ( 2 n  - qr"+3 - (2n + l)m+l+ 27-,+2 1 + 
%=I 

+Bn(2rn+l- (2n+ l)~-~+~+(%z- l)r-")]Qn(p), (3.20) 

where A, and B, are constants, and 

(3.21) 
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in which P&) is the Legendre polynomial of degree n. When (3.20) 
is expressed in terms of the Oseen variable p, its contribution to Y is found 
to be 

2 [A,{(2n - l)R-n-lpn+a - (2n + 1)Rn+lpr1+1 + 2Rn P I  -n+2 -+ 
11=1 

+ B,{2R-n+1pn+1 - (2n + 1)Rnp--n+2 + (2%- l)R7L+2p-n}]Qn(p), (3.22) 
and the requirement that this contribution should not contain terms of 
greater order than unity then gives 

I A ,  = 0, 

B,  = 0 (n  > 2), 
(3.23) 

Further, since Ql(P) = - t(1 -P2 ) ,  (3.24) 

the requirement that the term of order unity should represent the uniform 
stream (3.16) gives 

B 1 - - -1 2 ’  (3.25) 

Thus, Stokes’s solution (3.15) is recovered. 

3.3.  The second term of the Oseen expansion 
Since the leading term of the Oseen expansion is a uniform stream, the 

equation for the second term Yl must, in effect, be Oseen’s equation (2.4). 
In terms of the stream function, this equation is 

(3.26) 

It may be noted that :his equation now appears naturally as the equation 
for the perturbation of a uniform stream, which appears to be at variance 
with the view taken in 3 2.1. The reason is, of course, that we are no longer 
dealing with a technique for obtaining a uniform approximation to the 
solution. 

Equation (3.26) may be solved by the method used by Goldstein (1929). 
The transformation 

DgY,  = e@P@ (3.27) 
reduces the equation to 

(DE-i)@ = 0,  (3.28) 

and the general solution that vanishes at infinity and p = f 1 (the latter 
condition follows immediately from (3.3) of Y vanishes at p = & 1) is 
easily found to be 

m 

(3.29) 

where K?,,.,(&,p) is a modified Bessel function. 
Ressel function is half-integral, it may be expressed in the closed form 

Since the order of the 

(3.30) 
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The completion of the general integration is rather troublesome (see 
Goldstein 1929). However, this is not necessary since it is possible to 
apply further boundary conditions in the partially integrated form (3.29). 
When (3.29) is expressed in terms of the Stokes variable r ,  its contribution 
to D,"+ is seen to be 

co 
Fl( R)ehRTP A,( +Rr)*K, +,( +Rr)Qn(p). (3.31) 

n-1 

Then, since (3.30) shows that 

(BP)+rC,+&(+P) - ( 4 4 W  ! /P" (3.32) 

for small values of p, the condition that (3.31) should not contain terms of 
greater order than unity yields the results 

F,(R) = R,  (3.33) 

'A, = 0 (72 2 2 ) .  (3.34) 

- A,($n)*r-l( 1 -$). (3.35) 

The contribution to Dfy4 is thus 

From Stokes's solution (3.15), on the other hand, we obtain 

(3.36) 
3 

D:# = Z ( l - $ ) + o ( q ,  1 

so that (3.37) 

The equation (3.29) for Y, therefore reduces to 

and the particular integral that is not of greater order than unity in the 
Stokes region, and whose terms of this order match Stokes's solution, is 

Y, = - #( 1 + p)( 1 - e-"l-"').': (3.39) 

As was to be expected, this is the rotational part of Oseen's solution (2.5). 

3.4. The second term of the Stokes expansion 
When the first approximation to the left-hand side of the Stokes form 

(3.1) of the governing equation is calculated from the leading (Stokes) term 
(3.15), the equation for y4, may be written in the form 

(3.40) 

Hence we may write, for the time being, 

fm = R ,  (3.41) 
provided we allow for the possibility that the arbitrary constants in the 
integration of (3.40) may be functions of R.  Such functions must, of course, 
be of smaller order than 1/R in order that the solution should not contribute 
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to the leading term of the Stokes expansion; and there is no point in 
considering functions of smaller order than unity because these will be 
considered in subsequent terms of the Stokes expansion. 

A particular integral of (3.40) which satisfies the boundary conditions 
a t r =  1 a n d p =  k 1  is 

3 ( 2 + - 3 r + 1 -  16 (3.42) 

The gcneral solution satisfying these boundary conditions is then obtained 
by adding to (3.42) the complementary function (3.20). The contribution 
that this general solution makes to Y is therefore 

P P2 

+ 5 [A,((2n - l ) ~ - " p " + ~  - (2n + l)R-n+2pn+1 + 2R"+l P I  --n+2 + 
1 1 = 1  

+ B1L(2R--n+2pn+1 !- (2n + l)Rn+1p-n+2 + ( 2 ~ -  1)R"+3p-"}]Qn(p). (3.43) 

Now, the leading term of the Oseen expansion (3.13) has already been 
matched to the Stokes expansion, and it has been shown that F,(R) = R.  
Hence no term in (3.43) must be of greater order than R. Thus we get 

(3.44) 
1 A,, = 0, 

B,, = 0 ( n  221, 1 
B, = O(1). J 

R(b2Q&) + 2 4  P2Qi(p)I + 0 (R) ,  

When p = 0(1 ) ,  (3.43) therefore reduces to 

(3.45) 

and B, must be chosen so that (3.45) agrees with the expansion of the 
Oseen term Y, at small values of p .  From (3.39), this latter expansion is 

T I  = - E(1 - p2)[p - $p2( 1 -El.)  + 0(P3)1, (3.46) 

so that 

Thus, since Q 2 b )  = - b-4- P2), (3.48) 

# Q 2 ( ~ l . )  + 2% Qi(~l.1 = &(I - p2)(1 - PI* (3.47) 

we obtain B , =  -m 3 (3.49) 

The solution for the second term of the Stokes expansion is therefore 

(1 -p ' )~ .  (3.50) 
- Y  Y r2 

It  does not seem to have been emphasized sufficiently in the literature 
that a knowledge of Oseen's solution (2.5) enables a second approximation 
in the Stokes region to be obtained without a complicated application of 
the whole Oseen technique for obtaining a second uniform approximation. 
Yet the derivation of this second. approximation to + is, in principle, a 
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necessary preliminary for the calculation of a second approximation to any 
property of the flow. The case of the drag coefficient, however, is rather 
special. For the second term of (3.50), being odd in p, makes no contribution 
to the pressure-drag or skin-friction on the sphere. But this term is the 
particular integral arising from the inertia forces. Hence Oseen’s theory, 
which neglects inertia forces in the Stokes region, must give a proper second 
approximation to the drag coefficient. The actual calculation of this 
second approximation is particularly simple because the first term of (3.50) 
is a multiple (8) of Stokes’s solution. In  this way, we obtain Oseen’s 
result (2.6). 

Another interesting property which may be discussed on the basis of 
the second approximation (3.50) is the formation of ‘eddies’ behind the 
sphere. The first two terms of the Stokes expansion may be written in 
the form 

which, for sufficiently small values of R, vanishes only at r = 1 and p = 1. 
For larger values of R, however, $ also vanishes along the (real) curve whose 
polar equation is (according to (3.51)) 

2r2 + Y 

= (A + 1 ) 2 , 2 t r + 1 ,  
(3.52) 

and this curve is the boundary of the ‘eddies’. 
that the minimum value of p occurs at r = 1 and is 

Equation (3.52) shows 

2 3  
p .  = - + -  

R 4’ 111111 (3.53) 

so that the ‘ eddies ’ first appear at the rear stagnation point and do so when 
R = 8. Of course, this Reynolds number is far too large to make estimates 
based on only two terms of the Stokes expansion at all reliable. In fact, 
it cannot seriously be claimed that slow-motion theory gives even a 
qualitative explanation of the phenomenon. A similar conclusion was 
reached by Pearcey & McHugh (1955) in the case of Oseen’s (rather than 
the Navier-Stokes) equation, after a careful numerical evaluation of 
Goldstein’s (1 929) exact solution*. 

3.5. Higher approximations 
Since higher-order terms in the Stokes and Oseen expansions are not 

proportional to simple powers of R, it seems desirable to give a brief account 
of the nature of these’terms. This can be done most easily by first 
considering the third term of the Stokes expansion, i,b2. 

* In this respect, the numerical work of Tomotika & Aoi (1950) appears to be 
seriously in error. 
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If we set f,(R) = R2 (3.54) 
and allow the arbitrary constants in the integration for +2 to be functions 
of the Reynolds number, in the manner described for the case of +1, an 
elementary application of the matching conditions shows that the general 
solution for +, must be of the form 

where C,, are constants of integration. The evaluation of these constants 
proceeds as follows. Both C, and C, follow immediately from the no-slip 
condition on the sphere. The term in C, makes a contribution gC4 Rp3 
to 'F, so that C, may be evaluated from the small-p expansion of the (known) 
function Y,; C, and C, then follow from the no-slip condition. The 
case of C,, C, and C,, however, is somewhat different owing to the presence 
of the particular integral in r210gr. In fact, the contribution to Y of the 
term in ,O1(p) is 

which contains a term in R2 log R. If, therefore, there is no term of this 
form in the Oseen expansion (and it will be shown below that this is indeed 
the case), we must have 

The constants C, and C3 must then be multiples of log R also, in order to 
satisfy the no-slip condition on the sphere. Indeed, it is clear that we 
should replace (3.54) by 

f2(R) = R'logR (3.58) 
and that the corresponding +, is a finite multiple of Stokes's solution (3.15). 
Thus, using (3.55) and (3.57), 

-$( - Rp3-3R21~gRp2+3R2p21~gp+ C,R2p2)Ql(p)+~(R2), (3.56) 

el =310gR+0(1). (3.57) 

(3.59) 

The proof that there is no term in R2 log R in the Oseen expansion is 
very simple. Such a term would have to satisfy Oseen's equation (3.26) 
and the general relevant solution for DEY2 would be (3.29), in which 
the coefficients A,? are of order unity. But the contributions to $ would 
then be 

(R2 log R)eBRTP 2 ATL( ~ R T ) ~ K , + & $ R ~ ) Q ? ~ ( ~ )  (3.60) 

and (3.32) shows that the order of magnitude of (3.60) in the Stokes region 
is RlogR or greater. Such terms are known not to exist, so all the A ,  

m 

? L = l  
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must be zero. 
equation D;Yz = 0. 

Hence there is no term in R210g R (or, indeed, in any function of R whose 
order of magnitude lies between R and R2) in the Oseen expansion, and 
(3.58) and (3.59) are a valid representation of the third term of the Stokes 
expansion. 

Nevertheless, the Oseen expansion must ultimately involve terms in 
log R. For the strength of the source-flow outside the wake in the Oseen 
region is known to be proportional to the drag coefficient (Goldstein 1929). 
And, according to the first three terms of the Stokes expansion, the drag 
coefficient is 
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A similar proof applies to the solution of the resulting 

9 

Or( R 40 
C, = - I + - R  +-R210gR+O(R2) (3.61) 

(the third term is a new result). The argument shows, in fact, that the 
first occurrence of IogR in the Oseen expansion is in the term R310gR. 
The non-linearity of the Navier-Stokes equation then shows that both 
expansions must involve powers of log R, and it seems reasonable to suppose 
that both expansions are in powers of R, each term of which is multiplied 
by a polynomial in log R. 

Finally, it is worth noting that, although the technique was not designed 
with such in mind, the Oseen expansion is actually uniformly valid over 
the whole field of flow. Each successive term of the expansion does not 
give a higher uniform approximation, but it is always possible to find a 
finite number of terms which give, to any required accuracy, a uniform 
approximation to the solution. For instance, a first approximation requires 
all the terms up to, and including those in R3, since, at that stage, the last 
term (the doublet) of Stokes’s solution has been matched. The fact that 
it is possible to choose ajinite number of terms in this way provides a 
very simple d posteriori justification for the formal matching procedure, 

4. GENERAL EXPANSIONS FOR FLOW PAST A CIRCULAR CYLINDER 

In this section, we attempt to obtain higher approximations to the 
velocity distribution for flow past a circular cylinder, and to discover how 
far the method adopted for the sphere in $ 3  will apply in this case. This 
problem has been considered in outline by Lagerstrom & Cole (1955) 
who introduce Stokes and Oseen variables and obtain Stokes and Oseen 
expansions that follow naturally from the limit processes they adopt. This 
present account considers the problem in rather more detail, in order to 
display more fully the structure of the expansions*. In § 4.5 some comments 

* At a late stage inthe preparation of this paper, a short paper by Kaplun was read 
at the IX International Congress of Applied Mechanics entitled “ Low Reynolds 
Number Flow Past a Circular Cylinder ”. Though by no means a detailed account, 
it appears to present the same conclusions as are reached in the present paper, and 
gives an improved approximation for the drag. 
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are made on the effect of those inertia terms that are transcendentally small 
compared with the expansion parameter. 

4.1. The Stokes and Oseen expansions 

becomes 
In the Stokes region of the flow, the equation for the stream function 

where r ,  6, and t,!~ are as defined in $2.2, and where 

a 2  1 1 a 2  p = - + - - + - -  
r a,,:~ a,, 1.2 aoz' 

\Ye assume an expansion of the form * = foW*o(r ,  6 )  +fi(R)*d., 0) +fZ(R)*&,, 6) + ...) (4.3) 

where fn+I(R)lf,(R) + 0 as R + 0 (4.4) 
and f,(R) remains bounded at R = 0. As in the three-dimensional case, 
the expansion (4.3) is to satisfy the equation (4.1) and the no-slip condition 
on the cylinder, while the condition at infinity must be replaced by the 
condition that the expansion should match an expansion which is valid in 
the outer region. Again, for similar reasons, we introduce Oseen variables 

In terms of which the equation (4.1) becomes 
p = Rr, 'Y = R$, (4.5) 

We now assume an expansion 

Y' = e) + F ~ ( R Y ~ ( ~ ,  0) + F,(R)W~,  8) + ..., (4.7) 

where Fn+l(R)/Fqt(R) -+ 0 as R -+ 0. (4.8) 

The expansion (4.7) is to satisfy the equation (4.6), the uniform stream 
condition at infinity, and, as before, a matching requirement for small 
values of p :  that it should match the Stokes expansion (4.3). 

4.2. The leading terms of the expansions 
From the approach described in $2.2,  it follows that we may expect 

the leading term & of the expansion (4.3) to be the Stokes solution (2.7) 
withj,(R) = C, and the leading term Yo of the expansion (4.7) to be the 
uniform stream 

That (4.9) is in fact correct can be deduced in exactly the same way that 
Yo was obtained for the sphere in 5 3.2. Similarly, we can say that &, must 
satisfy 

T-,t*o = 0 (4.10) 

Yo = p sin 6. (4.9) 

F.M. S 
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since fo(0) is bounded. 
symmetric about 8 = 0 is 
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The most general solution of (4.10) that is anti- 

+o = [B1(2r log r - r + r-l) + C,(r3 - 2r ++)]sin 8 + 
a, 

+ 2 [Bn(rn+2 - (n  -t l)r2-" + nr-n) + Cn(rn- nr2-, + ( n  - 1)r-")]sin no, 
71=2 

(4.1 I )  
When (4.11) is expressed in terms where B,, C, ( n  2 1) are constants. 

of the Oseen variable p the contribution of fo(R),h0 to Y becomes 

fo(R){ [Bl(2p logp - 2p log R - p + R2p-l) + I + R2p-l - 2p)lsin 8 + 
a, 

+ 2 [B,(pn+2R-n-1- ( n  + l)p2-nRn--l + np-"Rn+1) + 
r1=2 

( - l)p-"Rn+l)]sinn8 . (4.12) + C71(pnR-n+1 - np2-"Rn--l + n } 
If this is not to contain any terms of greater order than unity, then 

c, = 0, 

(4.13) 

fo(R) = l / h g  R. J 
€Ience (4' becomes - 2B, p sin 8 + O( 1 /log R), (4.14) 

and because of the matching condition and (4.9) we get 
B 1 - - 1  - 2. (4.15) 

In view of the non-linearity of the Navier-Stokes equations, the term of 
order (log R)-l in (4.14) suggests that the functions F,,(R) will be inverse 
powers of log R. 

4.3. The second term of the Oseen expansion 
Having established that Yo represents a uniform stream, we can use 

Oseen's equation to  solve for Y,. In terms of the stream function this is 

(4.16) 

where = cos e. (4.17) 
A first integral to this equation that is bounded at infinity is given by 

(4.18) 

where ,Y,, are constants and KtL($p) is a modified Bessel function. Without 
solving for Y, we may. apply the matching requirement directly to the 
vorticity, VEY,, in the form (4.18). We know, from the Stokes solution +o, 

a, 

V ; Y ,  = el6 2 X,, K,($p) sin n8 
n = l  

that 
(4.19) 
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Writing (4.18) in terms of the Stokes variable Y, we get 

V:Yl = etRrcose 2 X n  K,(QRr)sin n9. (4.20) 

Sinc'e the Kn(z) behave as zn for small values of x, and since RViY must 
match V",, we must put 

W 

n = l  

and 
X ,  = 1, X, = 0 for n > 1, (4.21) 

Fl(R) = (logR)-l. (4.22) 
Equation (4.18) now becomes 

and this may be integrated (see Tomotika & Aoi 1950) to give 
V2 P Y 1 -  - e@ cOs 'K1(&p)sin e (4.23) 

p sin n9 W 

y, = 2 4II(iP) -y-- + harmonic function, 
n = 1  

(4.24) 

where d n  = 2K1 In + KdIn +1+ In-d, (4.25) 
the K,a and Irn being modified Bessel functions. Now Yl must tend to 
zero for large values of p and so the harmonic function in (4.24) can only 
be of the form 

IT,, p-, sin no. 

The matching condition between R+ and Y then requires that the constants 
I', must vanish for all n. Thus (4.24) reduces to the relevant part of Lamb's 
result (2.13). 

4.4. Higher terms in the Stokes and Oseen expansions 
From what has been shown above, it is clear that 

FJR) = (logR)-". (4.26) 
It is not difficult to see that the Stokes solution given by (4.11) and (4.13) 

will not include terms of order (log R)-2, (log R)-3, etc. Hence we conelude 
that 

f , ,(R) = (log R)-n-l (4.27) 
with the consequent result that 

V:+n = 0 
This means that as far as the Stokes expansion is concerned, the inertial 
terms are never important enough to be considered in the governing 
equations ; their effect is felt only through the outer boundary or matching 
condition. All the arguments applied to the general solution for z,bo will now 
apply to the general solutions for +,,, and we can infer that the $n differ 
from one another only by a numerical factor. This means that the Stokes 
expansion has now been reduced to the form, 

* = m + o  + W), (4.28) 

where &,(Y, 9) = (2r log r - Y + +)sin 8 (4.29) 

and f(R) = al(logR)-l + a2(l0g R)p2 i- ..., (4.30) 

for all n. 

5 2  
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the u,, being constants. 
step is therefore to solve for Y2. 

Inti Proudman and J .  R. -4. Peavson 

So far we have determined u, = -3. The next 
This is given by the equation 

(4.3 1) 

and must vanish at infinity. The calculation is straightforward, the 
solution involving a particular integral from the right-hand side of (4.3 1) 
and a complementary function given by (4.18). If V:Y1 is expressed in 
the form (4.23) and Yrl in the form (4.24) then we obtain readily 

(4.32) 

(4.33) 

(4.34) 

where g,(R) = O(R-l), 
g2(R) = O(R-2), 

g,(R) = O(RP--2) ( p  > 2). 
If we write CFY’, = d S I T ,  then (4.31) and (4.32) give 

m 
(‘F: + $)n = 2 g,,(p)sin no. 

?I = 1 

Solving (4.34) by the method of variation of parameters we get 

VFY’, = 2 k,,(p)sin no + complementary function, (4.351) 
,1=1 

where k,,(R) is O(Rir+2) except for n = 1 when it is O(R). By the same 
argument as that used in $4.3, the complementary function in (4.35) must 
be 2, efpcose Kl(+p)sin 8, and hence (4.35) becomes 

Finally, on integrating again, we get 

(4.37) 

where Zn(R) = O(R%). (4.38) 

and in particular Zl(R) = L,(R)+O(R2) where L, is a constant. When 
F2(R)’Y2 is written in terms of the Stokes coordinate r ,  it is found to give 
a contribution - &(log R)-4 tofo(R)&,. Thus, from the matching require- 
ment, we deduce that 

Zl = (4-~+10g4).  (4.39) 

Next, the vorticity term VgY, given by (4.36) may be matched to the 
corresponding vorticity term R-lV?$, in the way that (4.19) was matched 
t o  (4.20), to give 

x 2 =  -1 2 ( 2  1 - Y + 1% 41, (4.40) 

az being the coefficient of (logR)-2 in (4.30). 
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It  is not difficult to see how the process outlined above to give Y2 and 
thence ci2 may be used successively to obtain all the TI,, xll .  Each of the 'r,P 
will consist of a complementary function 

where R,, is some constant, and a particular integral 
m - 
2 m,,,(p)sinnfl, 

11-1 

where the m,,,(p) display the same behaviour as the l,)(p) in (4.37). 

4.5. Further eJCects of the intertia terms 
The expansions (4.3) and (4.7) which have been considered above 

differ very greatly from the corresponding expansions (3.5) and (3.13) 
obtained for the sphere. In fact, when (4.3) is written in the form (4.28) 
it is seen that the entire Stokes expansion obtained for the cylinder corre- 
sponds to just the first term of the Stokes expansion for the sphere. Close 
to the cylinder, virtually no account has been taken of the inertia terms, 
while in the Oseen region terms of order R have been neglected. 

From a physical point of view the expansions that we have obtained 
cannot be expected to provide much information. Many important 
characteristics of slow motion will be caused by just those terms of order R 
that have been neglected because R is transcendentally small compared 
with any power of (logR)-l. We can attempt, in a formal way, to take 
account of these terms of order R (and also of higher powers of R) by writing 
our expansions for the stream function in the form 

4'1 = (logR)'"[$00(r, 0) + (logR)-'#,,l(r, 6) -t (logW2h2(r,  6 )  + ... I + 
+ R(iog ~ ) ~ l [ $ ~ ~ ( r ,  e) + (log ~ ) - 1 + ~ ~ ( r ,  e) + (iogR)--2$12(r, e)  + ...I + 
. . . . . . . . . . . . . . . . . . . . . .  

+ R"(logR)"i"[$,,o(r, 8) +(log R)-'$,,I(r, 0) + (logR)-2$jL2(r, 6) + ..-I 
. . . . . . . . . . . . . . . . . . . . .  .(4.41) 

for the Stokes expansion, where Po, PI, . . .PIE  are integers, with a similar 
form for the Oseen expansions. 

These expansions would have to satisfy the same equations, the same 
boundary conditions and the same matching condition as in 0 4.1. Formally, 
the derivation of the terms $Op and Yo, would be carried out exactly as in 
s4.2, $4.3 and $4.4. It is seen readily that the JIOp substituted into the 
right-hand side of (4.1) would yield inhomogeneous equations for the t,blp. 
The matching conditions with the boundary conditions would then enable 
the arbitrary constants in the integration to be determined. By a process 
very much like that used for the JIOp and 'Pop, all the and Yln could be 
derived successively. It will be observed that only a finite number of the 
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&.bik and 'PLa would be needed in order to obtain any particular one of them ; 
in this sense, the formal process suggested above for determining the various 
functions in (4.41) is a possible one. 

Asymptotic expansions for low Reynolds number flow are used 
extensively to give numerical approximations to certain constants of the 
physical flow. R is larger than (log R)-3, and so 
from a numerical point of view the term t,blo in (4.41) might well be more 
important than t,bo3. Though it is difficult to justify in any analytic sense 
the use of (4.41), it is nevertheless clear that many properties of slow 
streaming motion past a circular cylinder which do not form any part 
of the asymptotic expansions (4.3) and (4.7) might be predicted by using 
a suitable number of terms from the conjectural expansion (4.41). 

For R as small as 
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